Research and innovation in the hydropower domain
WP2: Key contributions 2017-2020

Task 2.1
Morpho-climatic controls on future HP production

Task 2.2
HP infrastructure adaptation to future requirements

Task 2.3
Environmental impacts of future HP operating conditions

Task 2.4
Integrated simulation of HP systems operation

Research directions

- **Increase of flexibility** in hydropower operation – structural and operation requirements
- **Update of climate change impacts** on HP production
- **Extreme natural hazards** and risk of HP operation
- **Design of new projects under uncertainties**
- **Reservoir sedimentation** and sustainable operation of storage hydropower plants

+ 3 Demonstrators
Task 2.1
«Morpho-climatic controls on future HP production»
Sediment transport measurements
Albula (upstream of Solis HP reservoir)

- Comprehensive calibration measurements (spring 2018)

Photos: Tobias Nicollier (WSL)

Geophone sensors
Lorry-mounted basket sampler

Snow-melt day (7 May, 2018)
Final outcome: Statistically corrected sub-seasonal meteorological forecasts improve runoff predictions and revenues of hydropower production in alpine catchments.
New climate change scenarios CH2018 used for SCCER SoE synthesis

• Official release of CH2018: 13 Nov 2018 at ETH Zürich

Example of preliminary results: Change in runoff for a region in the Valais in the course of the 21st century

Also see presentation by Manfred Stähli on Thursday, 14:10h
Task 2.2
«Infrastructure adaption to future requirements»

In cooperation with the CTI

Energy funding programme
Swiss Competence Centers for Energy Research

Schweizerische Eidgenossenschaft
Confédération suisse
Confederazione Svizzera
Confederaziun svizra

Swiss Confederation
Commission for Technology and Innovation CTI
Design Optimization of Alpine Desanding Facilities

- Development of enhanced design recommendations considering integral system including approach flow conditions

Measurement campaign:
- Functional check
- Prototype data
- Flow/settling proc.

Numerical model:
- Concept and setup
- Calibration and validation

Parameter study:
- Geometry
- Hydraulics
- Structures
New design equation for air demand:

$$\beta = 0.007 \, F_c^{1.20} \zeta^{0.25} (L/h_t)^{0.26} (1+S)^{-0.92}$$

See presentation by Benjamin Hohermuth on Friday, 9:45h
Hydropower potential of Swiss periglacial environment

- Analysis and rating of 62 potential future sites for HPP production (Society, Economy, Environment)

<table>
<thead>
<tr>
<th>new reservoir</th>
<th>MW</th>
<th>GWh/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aletsch Glacier</td>
<td>73</td>
<td>218</td>
</tr>
<tr>
<td>Gorner Glacier</td>
<td>78</td>
<td>235</td>
</tr>
<tr>
<td>Grindelwald Glacier</td>
<td>28</td>
<td>85</td>
</tr>
<tr>
<td>Hüfi Glacier</td>
<td>35</td>
<td>105</td>
</tr>
<tr>
<td>Rhône Glacier</td>
<td>29</td>
<td>88</td>
</tr>
<tr>
<td>Roseg Glacier</td>
<td>77</td>
<td>231</td>
</tr>
<tr>
<td>Trift Glacier</td>
<td>80</td>
<td>145</td>
</tr>
<tr>
<td>Total</td>
<td>401</td>
<td>1108</td>
</tr>
</tbody>
</table>

See presentation by Robert Boes on Thursday, 15:20h
Task 2.3
«Environmental impacts of future HP operating conditions »
Topics

Managing environmental flows

Impacts of small-scale hydropower plants

Impacts of new hydropeaking regimes
Hydroecology and Floodplain Sustainability in Application – HyApp

Preliminary results of the artificial flood in the Sarine (peak discharge 195 m³/s)

Structural effects
• Decrease of ruderal vegetation (-3.9%)
• Increase of bare sediment area (+4.3%) mainly because of erosion of vegetation
• In general no major erosion and deposition of sediment (-10 – -20 cm)
• Short travel distance of gravel particles (40-80 m; max. 300 m)
• Sediment replenishments behaved as predicted in laboratory experiments

Functional effects
• Major drift of macroinvertebrates, organic matter (seston) and microbes occurred when streambed sediment started to move
• Short-term reduction in macroinvertebrate abundance, but fast recovery of

Also see presentations by Severin Stähly on Friday, 10:15h and by Annunziato Siviglia on Friday, 11:00 h
Small-scale hydropower plants in Alpine streams – studying ecological effects across different scales

Objective: Quantification of the ecological effects of small-hydropower plants and the propagation across the longitudinal and lateral dimension of alpine streams.

Work at Eawag: Combination of two approaches

1. **Literature review**
 (Lange et al. 2018)

2. **Field study**
 (in 8 stream pairs)

See presentation by Christine Weber on Friday, 11:15h
Effects of hydropower on stream temperature heterogeneity

Hydropower production causes discharge and temperature alterations that might influence local river thermal patterns.

→ How is river thermal heterogeneity affected by hydropower production?
→ How can we model and quantify such thermal alterations?

Hydropower and water temperature: modelling the effects of management scenarios on river thermal heterogeneity

Davide Vanzo, Martin Schmid, Christine Weber and Michael Döring
Task 2.4
«Integrated simulation of HP systems operation»

In cooperation with the CTI

Energy funding programme
Swiss Competence Centers for Energy Research

Schweizerische Eidgenossenschaft
Confédération suisse
Confederazione Svizzera
Confederaziun svizra

Swiss Confederation
Commission for Technology and Innovation CTI
Integrated modelling framework

CLIMATE DRIVERS
- Precipitation
- Temperature
- Evaporation

SOCIO-ECONOMIC DRIVERS
- Energy demand
- Energy prices

ENVIRONMENTAL PROTECTION LEVELS
- Minimum Environmental flow

HYDROLOGICAL MODEL
- Reservoir release
- Flow
- Sediment

HP-OPERATION MODEL
- HP production

STOCHASTIC OPTIMISATION
- HP production
- Profit

ROBUST OPTIMISATION
- HP production
- Profit

Input from T2.1
Input from Uni Basel (SCCER-CREST)

MIN/Max production
Sediment threshold

Operational CONSTRAINTS

RESERVOIR RELEASE

See presentation by Paolo Burlando on Friday, 11:30 h
Three case studies
with different features
The Visp valley

Features:
- Single reservoir hydropower system
- Production and pumping plants
- Glacier in the watershed

Objectives:
- Reoptimize the operation looking at tradeoff between production and revenue
- Assess the system vulnerability under changing climate and energy prices
- Assess, via reoptimization the adaptation capacity to projected water and energy changes

Outcomes:
- All objectives reached
- Anghileri et al. Alpine Hydropower in the Decline of the Nuclear Era: Trade-Off between Revenue and Production in the Swiss Alps, *JWRPM*, 144(8), 2018
- Anghileri et al., A comparative assessment of the impact of climate change and energy policies on Alpine hydropower, *WRR* (in press)
- + 2 MSc theses and several presentation at International Conferences
The Verzasca dam

Objectives:
- Assess the room for improving the operation using hydrometeorological forecasts
- Contrasting forecast value (HP revenue improvement) and accuracy (forecast performance)
- Assessing the impact of bias correction on forecast value and accuracy

Features:
- Single-reservoir hydropower system
- Production plants
- Snow and rain fed

Outcomes:
- Extended hydrological forecasts generated by using ECMWF-CY40r1 and the hydrological model PREVAH
- Model Predictive Control based design of the dam operation
- Bias-correction improves the forecast quality but not much its value

See poster WP2.4-01
The Maggia system

Features:
- Multi-reservoir hydropower system
- Production and pumping plants
- Extensive diversion network
- One of the few remaining natural alluvial braided floodplains in Switzerland

Objectives:
- Assess flexibility of complex HP plants (including pumping) to climate and price variability
- Multiobjective optimization of HP operation including the environment
- Trade off analysis between HP production, revenue and a set of ecosystem indicators

Outcomes:
- Model of the whole system calibrated and validated...
- ... and coupled with a Multiobjective Evolutionary Direct Policy Search optimization framework
- First optimization results with HP production vs revenue

Next step:
- Inclusion of environment as additional (robust) optimization objective
WP2: Key contributions 2017-2020

Task 2.1
Morpho-climatic controls on future HP production
- Climate change impact (M. Stähli)
- Ice thickness determination (M. Grab)
- Subglacial sediment transport (I. Delaney)
- HP potential (world / CH) (V. Round, D. Farinotti / R. Boes)

Task 2.2
HP infrastructure adaptation to future requirements
- Periglacial HPP infrastructure (P. Manso)
- Reservoir sedimentation (D. Ehrbar)
- Surge tank adaptations (N. Adam)
- Turbidity current venting (S. Chamoun)
- Bottom outlet hydraulics (B. Hohermuth)

Task 2.3
Environmental impacts of future HP operating conditions
- Mitigation of impacts by HP operation (S. Stähli)
- Downstream impacts of SBT operation (A. Siviglia)
- Ecological effects of SHPP (C. Weber)

Task 2.4
Integrated simulation of HP systems operation
- Multiobjective optimal operation of Alpine HP systems (P. Burlando)
- Simulation of climate variables for present & future climates (N. Peleg)
Thank you for your attention!

boes@vaw.baug.ethz.ch
High spatio-temporal resolution climate scenarios for snowmelt modelling in small alpine catchments

Michael Schirmer, Nadav Peleg
Snow or no snow?
Natural variability

Avg
How coincidental is the 30-year average?
How certain is a future climate different from the current climate?
High spatio-temporal resolution climate scenarios for snowmelt modelling in small alpine catchments

Michael Schirmer, Nadav Peleg

Motivation

The aim of this project is to support economic risk assessments of long-term investments by small hydropower plant (SHP) operations due to a changing climate. We estimate the impact of climate change on snow water equivalents (SWE) and snowmelt using an innovative combination of novel components: a stochastic 2-dimensional weather generator, and a high-resolution energy balance snow cover model. This allows to include relevant uncertainty sources at a local scale (e.g., natural climate variability).

Methods

Future climate scenarios are generated based on newest global and regional climate models for the extreme RCP8.5 scenario for the mid and end of this century. Multiple realizations of future climate periods (30 years) are considered to assess the irreducible impact of natural climate variability. The likelihood of a single winter in a future climate (or of a climate period of 30 years) to be significantly different to our current climate can be assessed.

The model chain in high resolution (100 m x 100 m) ensures that relevant processes are considered as for example terrain shading of shortwave radiation, realistic spatio-temporal structure of precipitation fields influenced by orographic enhancement, as well as redistribution of snow by wind based on terrain roughness.

Location and spatial model output example

Natural variability of single years – mid of century

- Simulated SWE (5, 50, 95 percentiles)
- Current climate (blue) 900 years
- Future climate (red), 5 climate models (RCP8.5) x 100 years
- The spread between dry and wet years is substantially larger than the effect of climate change.
- This spread evolves mainly from natural variability.
- A relevant change between current and future climate can be observed during melt season, while the amount of SWE is not changing relevantly.
- Changes are more evident in lower elevation bands, however, in the shown band most of SWE is stored.

Variability/Uncertainty of climate period predictions

- Same as above, however, the spread of median values of 30-year blocks are analyzed (5 and 95 percentiles), i.e.
- “How uncertain are our predictions of a future climate including natural variability and climate model uncertainty?”
- Overlapping areas can be interpreted as a likelihood of no change in SWE between the current and future climate period.
- Mid of this century there is a substantial likelihood of having as much snow as today during peak winter, although considering the extreme climate scenario RCP8.5. A substantial change in average melt out is very likely.
- Both natural climate variability and climate model uncertainty contribute to this range.

Model results against observations

- Average SWE of 30 years in an elevation band of 2000 to 2400 m
- Dynamic well preserved
- Conservative spread between the years
- Approx. 10% less precipitation (under further investigation)

Conclusion and Outlook

- Natural climate variability in a constant climate is responsible for both single years and climate periods of 30 years to be different from each other (e.g., dryer or wetter).
- Because of natural climate variability it is quite uncertain to state that a substantially warmer climate (RCP8.5, mid of this century) will lead to less SWE in the elevation range (2400 - 2600 m).
- For the end of this century RCP8.5 scenarios show a significant change in the amount of SWE for all elevation bands.
- We want to answer, for which climate scenarios and for which elevation ranges the impact of climate change is clearly visible, and how this uncertainty in SWE can be translated to runoff.
Multiple-purpose use of reservoirs in high alpine areas under climate change: a national view

Manuela Brunner, Astrid Björnsen Gurung, Massimiliano Zappa, Manfred Stähli
(Swiss Federal Research Institute WSL)
Comparison of water availability, water reservoirs and water demand

Water reservoirs

Water demand
Potential of reservoirs for alleviating water shortages

Year 2003 (heat wave and drought in Switzerland)

- Storage > seasonal shortage
- Storage < seasonal shortage
Sediment management in swiss reservoirs: experiences and challenges

Samuel Vorlet
(LCH, EPFL)

SCCER SoE Annual Meeting, Horw, 13-14 Sept 2018
Sediment management in swiss reservoirs: experiences and challenges

Samuel Vorlet*, Pedro Manso

Platform of Hydraulic Construction (PL-LCH), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

*Corresponding author: samuel.vorlet@epfl.ch

Figure 1: Sediment deposition; Giétroz du Fond, 2018

Figure 2: Reservoir sedimentation, Räterichsboden, KWO

Figure 3: Reservoirs of the survey

Figure 4: Preliminary results
Storage hydropower potential from dam heightening

David Felix, Andrin Leimgruber, Robert Boes
Potential von Talsperrenerhöhungen

Potentialstudie an 38 grösseren Stauseen in der Schweiz

→ mit Erhöhungen von 16 bis 29 Talsperren
um 5% bis 20% der bestehenden Sperrenhöhen
Umlagerung von 1.7 bis 2.8 TWh vom Sommer in den Winter
Potential von Talsperreerhöhungen

1 Lago d’Albigna
2 Lago Bianco
3 Lago di Cavagnoli
4 Lac de Cleuson
5 Lai da Curnera
6 Lac des Dix (Gde. D.)
7 Lac d’Emosson
8 Gigerwaldsee
9 Griessee
10 Grimselsee
11 Lac d’Hongrin
12 Klöntalersee
13 Lago di Lei
14 Limmernsee
15 Lago di Lucendro
16 Lago di Luzzzone
17 Lai da Marmorera
18 Mattmarksee
19 Lac de Mauvoisin
20 Lac de Moiry
21 Lai da Nalps
22 Lago del Naret
23 Oberaarsee
24 Lago Ritom
25 Lac de Salanfe
26 Lago del Sambuco
27 Lai da Santa Maria
28 Lac des Toules
29 Zervreilasee

nach Leimgruber (2018)
Hydropower and water temperature: modelling the effects of management scenarios on river thermal heterogeneity

Davide Vanzo, Martin Schmid, Christine Weber and Michael Döring

In cooperation with the CTI

Energy funding programme
Swiss Competence Centers for Energy Research

Schweizerische Eidgenossenschaft
Confédération suisse
Confederazione Svizzera
Confederazione svizra

Swiss Confederation
Commission for Technology and Innovation CTI
Hydropower production causes discharge and temperature alterations that might influence local river thermal patterns.

→ How is river thermal heterogeneity affected by hydropower production?
→ How can we model and quantify such thermal alterations?