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Stimulation = enhancement of permeability sccer 9505
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How tg imprpve reservoiﬁ permeability

=0

Permeability Clay
<1014 m? 108 m? 10® m?
SCCER-SoE Annual Conference 2016 / Sion



How to create permeability




Permeability creation through massive
fluid injection SCCER5 SoE

Foorer

Two “end-member” rock mass response to fluid injections

a) Hydraulic fracturing ?3 b) Hydro-shearing
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Mechanics of hydraulic stimulation SCCER5$OE
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Permeability creation processes

—

Shearing of rough fractures

Wing cracks

Any brittle
process that
increases void
space (dilation)
has the potential
for permeability
creation.




Permeability creation processes

Relays and pull-appart structures N Shmin

Evans et al. 2005 GJI. 160. 388-412



Permeability creation processes

Hydraulic fractures (with proppants)
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Permeability creation through massive
fluid injection SCCER5 SoE
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How to \ an hydraulic stimulation in order

to maximize our chances of creating sufficient and
persistent permeability increase ?

19.09.2016 SCCER-SoE Annual Conference 2016 / Sion 14



Parallel with tunneling approaches

Rock mass
characterization
Putting numbers
on geology

- Rock type

- Rock strength

- RQD

- Fracture network
characteristics
including orientation
and joint surface
conditions

- Interlocking

- Alteration

- In-situ stress

- Presence of faults
or other structures
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Anticipation
of rock mass
behavior
Failure modes

Iterations at each project stage

Concept / pre-feasibility / feasibility / implementation

CCER 9 SoE

Tunnel design \
and mitigation
measures

Empirical design
charts and numerica
methods

30

- Tunnel alignment

- Exc. methods

- Round length

- Face fractioning

- Destress blasting

- Ground freezing

- Umbrella

- Injection grouting

- Support: bolt,
mesh, shotcrete,
arches,...

Immediate
collapse

o e n 3(‘5
T 17 1

Roof span, m

107! 10" 10! 10° 10}
Stand-up time, hrs

Risk / Uncertainty / cost analyses

19.09.2016
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Stimulation design

19.09.2016

- ‘

e

© S. Cattin

SCCER-SoE Annual Conference 2016 / Sion

SCCER 5 SoE

//;ﬁnuﬂaﬁon 4\\

design

- Wells siting

- Well trajectory

- Well completion
- Interval isolation

- Injection rate,
pressure and volume

- Interval sequence

- Shut-in management

- Fluid properties

- Proppants

- Response to incident
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Stimulation design challenges
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What shall | do to get

sufficient permeability and

heat exchange charateristics?
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- Presence of faults
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- Initial hydraulic
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permeability

- Fault strength

- Background seismic
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What shall | do to get
sufficient permeability and
heat exchange charateristics?

Anticipating rock mass behavior:
What processes will be activated
during stimulation ?

soesign:

What methodology to decide
on the optimal stimulatipn

parameters ?
What do | need to

know to take the
right decisions ?

How do | measure or
estimate the required
parameters?
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‘Uncertainty / risk
analyses framework
at successive project stagés
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design

- Wells siting

- Well trajectory

- Well completion

- Interval isolation

- Injection rate,
pressure and volume

- Interval sequence

- Shut-in management

- Fluid properties

- Proppants

- Response to incident




O&G stimulation work flow

Rock mass characterisation:

Reservoir Characterization
Proposed S

Need for
P&D !

Calibration /
Lessons learned

focus on sedimentary basin
Log interpretation

Rock properties Well tests

Stresses, Pore pressure
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|
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Real-time monitoring
On the'Job d‘ES|gn changes

Stimulation Desigr

SCCER S SoE

Design tool:
Focus on HF with
proppants in
stratabound
environment

Fracture Modelling
njectlon schedule deS|gn

FracCADE* .

ol

Operations

Perforation / n

Selection & design
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1 - Data Frac
2 — Main injection

Complexity depends on crltlcallty of the

oE Annual (,J nferénce 2016 /

Materials selection
Fluids & proppant

job: from dagfs to months of preparation
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What shall | do to get
sufficient permeability and
heat exchange charateristics?

Anticipating rock mass behavior:
What processes will be activated
during stimulation ?

soesign:

What methodology to decide
on the optimal stimulatipn

parameters ?
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know to take the
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How do | measure or
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Stimulation design challenges: filling the 898ccer G sok

ISC experiment ~\
KWo-TUnne/ F. Amann, 11:25

etal. (2011)
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Anticipatihg rock mass behavior:
What processes will be activated
during stimulation ?

Design:
What methodology to decide
on the optimal stimulation

parameters ? BE(PF  Geo-Enerey Lab

ECOLE POLYTECHNIQUE Gaznat chair on Geo—Energy

FEDERALE DE LAUSANNE

*  Experiments on 30-30-30 centimeters block under
true
tri-axial stresses (up to 20 MPa) & pore-pressure

. Extensive active acoustic monitoring of fracture
growth (32 sources / 32 receivers) on top of pressure
— rate measurements

* Injection from a wellbore (cemented or not, inclined
or not...)

*  Any materials could be tested 91
*  Upand running in mid/late 2017




Stimulation design challenges: fllllng the gaQCCERSSoE

Total stress change Ao
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Numerlcal methods that captures
stimulation processes

Poster: Jansen et al.

Design:

What methodology to decide

N s - -
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Antncnpatmg rock mass behavior:
What processes will be activated
during stimulation ?

etal. (2011)

on the optimal stimulation

parameters ?

.(I)ﬂ- Geo-Energy Lab

ECOLE POLYTECHNIQUE Gaznat chair on Geo—Energy

FEDERALE DE LAUSANNE

Experiments on 30-30-30 centimeters block under
true
tri-axial stresses (up to 20 MPa) & pore-pressure

Extensive active acoustic monitoring of fracture
growth (32 sources / 32 receivers) on top of pressure
— rate measurements

Injection from a wellbore (cemented or not, inclined
or not...)

Any materials could be tested
Up and running in mid/late 2017
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Stimulation design challenges:

Total stress change Ao
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Numerlcal methods that captures
stimulation processes
Poster: Jansen et al.

Modeling planar 3D hydraulic fractures
Fully-coupled implicit level set scheme

fracture front

filling the gaQCCERgsoE

&3 “ Proppant transport /
o1 effect of complex fluid
2 rheology on fracture growth

| c f poster F. Moukhtari on fracture
asymptotic driven by power-law fluids

Anticipating rock mass behavior:
What processes will be activated

during stimulation ? Properly modeling

the propagation of
fluid driven shear

fractures

(and the possible
nucleation & arrest of
dynamic slip)

Design:

What methodology to decide
on the optimal stimulation
parameters ?

Apfoy =0.5
G&G, 2012 — QS — QD
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c.f. poster
F. Ciardo

Peak slip 0},
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Stimulation design challenges: filling the 898ccer G so

calibration and
parameters estimation

Computation of
shear and

normal stress

on fracturg

Evaluation
of optimal
hole trajectory
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How do | measure or
estimate the required
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Stimulation design challenges: filling the 898ccer G so

calibration and
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Computation of
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normal stress
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How do | measure or
estimate the required Uncertainty / risk
parameters? analyses framework

at successive project stages
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Hydropower and Geo-Energy in Switzerland
Challenges and Prospects

Challenges for stimulation
/frorm science to engineering

What processes are activated during
stimulation ? :> How to control what processes are

Which processes are most efficient activated during stimulation ?

for reservoir creation ? %
What parameter is required to

How to measure reservoir make engineering decisisons ?
parameters at depth ? To what precision ?

We need to develop stimulation design workflow
New modeling tools ﬂ for deep geothermal reservoirs, applicable at the
and techniques s different project stage and including uncertainty
] risk analyses framework.

Benoit Valley / benoit.valley@unine.ch
Brice Lecampion / brice.lecampion@epfl.ch

Thank you !
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